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1. Introduction

The frequently studied polynomial-exponential equation of Goormaghtigh

(1)
xm − 1

x− 1
=
yn − 1

y − 1
, m > n > 2, y > x ≥ 2

is conjectured to have precisely the solutions

(2) (x, y,m, n) ∈ {(2, 5, 5, 3), (2, 90, 13, 3)}

in integers. Unconditionally, however, the number of such solutions is not known
to be finite, even if one fixes one of the variables x, y or n (though recent work of
the first author, Gherga and Kreso [4] establishes such a result for a given n under
the additional assumption that gcd(m− 1, n− 1) > 1).

If one fixes any two of the variables x, y, m or n, however, then the number of
solutions to (1) is, in fact, finite. This was proven for a given pair (x, y) by Kanold
[13] and for fixed (m,n) by Davenport, Lewis and Schinzel [8]. Explicit versions of
these results for small parameters (x, y) and (m,n) date back to work of Makowski
and Schinzel [19], who proved the following pair of theorems.

Theorem 1 (Makowski-Schinzel). The only solution to equation (1) with

(3) 2 ≤ x < y ≤ 10

is given by (x, y,m, n) = (2, 5, 5, 3).

Theorem 2 (Makowski-Schinzel). The only solution to equation (1) with m ≤ 5
is given by (x, y,m, n) = (2, 5, 5, 3).

The first of these theorems is of an entirely elementary nature, based upon
congruential arguments, while the second applies the classical method of Runge
[22]. Our goal in this paper is to introduce new techniques to improve the first
of these results substantially, and to extend the second to take advantage of both
improvements in computational power, and in the technical machinery underlying
Runge’s method. We prove the following.

Theorem 3. If (x, y,m, n) is a a solution to (1) with

2 ≤ x < y ≤ 105,

then (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3).
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Theorem 4. The only solutions to equation (1) with either

(4) m = n+ 1 and 3 ≤ n ≤ 17,

or

(5) gcd(m− 1, n− 1) > 1 and m ≤ 50

or

(6) (n,m) = (3, 6)

are given by (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3).

Equation (1) has been the subject of much study. A good survey of results
up to 2001 or so can be found in the paper of Shorey [23]. For more recent work,
the reader may consult [11], [12], [16], [17], [18] and [28]. The current state of the
art for applying techniques from Diophantine Approximation to (1) can be found
in [4], and in the papers of Nesterenko and Shorey [20], and of Bugeaud and Shorey
[7]. In the last of these, by way of example, one finds the following result.

Theorem 5 (Bugeaud-Shorey). Let α > 1. Equation (1) with

gcd(m− 1, n− 1) > 4α+ 6 +
1

α
and

m− 1

n− 1
≤ α

implies that max{x, y,m, n} is bounded above by an effectively computable constant
depending only on α.

This theorem is a strong effective generalization of a classical result of Karani-
coloff [14] which showed that (x, y,m, n) = (2, 5, 5, 3) is the only solution to equation
(1) with the property that (m − 1)/(n − 1) = 2. We apply the arguments leading
to Theorem 5 to deduce

Theorem 6. There are no solutions to equation (1) with (m− 1)/(n− 1) = 3.

.
The outline of this paper is as follows. In Section 2, we prove Theorem

3. Theorem 4 is proved in Sections 3, 4 and 5. The first of these is devoted to
equation (1) with (m,n) as in (4), the second to (m,n) satisfying (5), and the third
to (m,n) = (6, 3). In Section 6, we prove Theorem 6.

2. Fixed values of x and y : Theorem 3

In this section, we will prove Theorem 3. For fixed values of x and y, an explicit
finiteness statement for solutions to equation (1) is provided by the following result
of He and Togbé (Lemma 2.3 of [12]). This is a slight sharpening of earlier work of
Bugeaud and Shorey [7] and is based upon bounds for linear forms in logarithms.

Lemma 2.1. If (x, y,m, n) satisfy (1) with y > x ≥ 2, then

m− 1

1 + logm
< 1.391 · 1011(log y)2

For the remainder of this section, we will assume that 2 ≤ x < y ≤ 105,
whence it follows from Lemma 2.1 by routine calculation that if (x, y,m, n) satisfy
equation (1), then

(7) m < 1015
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Our main tool for handling the a priori roughly 1040 remaining tuples (x, y,m, n)
is the following result, which is easily derived from equation (1) (see the proof of
Lemma 2 of Bugeaud and Shorey [7]).

Lemma 2.2. If (x, y,m, n) satisfy equation (1), then

(8) 0 < m log x− n log y + log

(
y − 1

x− 1

)
< 2 · x−m.

To reduce the number of cases under consideration to a manageable quantity,
we will begin by proving the following.

Proposition 2.3. Suppose that (x, y,m, n) is a a solution to (1) with

2 ≤ x < y ≤ 105.

Then either (x, y,m, n) = (2, 5, 5, 3) or (2, 90, 13, 3), or we have that m > 100.

Proof. We consider the precisely 4753 pairs (n,m), with 3 ≤ n < m ≤ 100. For
each such pair, we have that

xm − 1

x− 1
=
yn − 1

y − 1
≤ 105n − 1

105 − 1

which provides an upper bound of the shape x ≤ x0(n,m) (the largest of which
corresponds to x0(99, 100) = 89021). For each pair (m,n) and each x with 2 ≤ x ≤
x0(m,n), we solve numerically the equation

n log y − log(y − 1) = m log x− log(x− 1)

and let y0 denote the value of y we find with x < y0 ≤ 105. By the Mean Value
Theorem, if there exists a solution to equation (1) corresponding to the given triple
(m,n, x), with y an integer, we necessarily have, from inequality (13), that

(9) |y − y0| ≤
2z(z − 1)

(nz − n− z) · xm
,

where z lies between y and y0. It is easy to check that the right-hand side of
inequality (9) is bounded above by 1, so that necessarily

(10) ‖y0‖ <
2y0(y0 + 1)

(n(y0 + 1)− n− y0 − 1) · xm
,

where ‖y0‖ denotes the distance to an integer of y0. We verify that inequality
(10) fails for all y0 under consideration, except for (x,m, n) = (2, 5, 3) or (2, 13, 3),
where we find that y = 5 and y = 90, respectively. This completes the proof of
Proposition 2.3. The computation here took somewhat more than 100 hours in
Maple, on a single core of a MacPro (2013 vintage), but is readily parallelized.

We note that, apart from these two examples, the closest we come to satisfying
(10) is for x = 5, n = 3 and m even, corresponding to the family of “near”-solutions
arising from the identity (

5m0−1
2

)3 − 1
5m0−1

2 − 1
=

52m0 − 1

5− 1
+ 1.

�

We next treat the cases with gcd(x, y) > 1, appealing to Théorème 4 of
Makowski and Schinzel [19].
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Proposition 2.4 (Makowski-Schinzel). If (x, y,m, n) satisfy (1) with y > x ≥ 2
and d = gcd(x, y), then

(11) y ≡ x (mod dn).

Applying this result, for 2 ≤ x < y ≤ 105 with gcd(x, y) = d > 1, it follows
that

105 ≥ y > y − x ≥ dn,
and so

n ≤ 16 if d = 2 and n ≤ 10 if d ≥ 3.

If x = d = 2, we thus have

2m − 1 =
xm − 1

x− 1
≤ 1080 − 1

105 − 1

and so m ≤ 249. If x = 4, d = 2, then

4m − 1

3
=
xm − 1

x− 1
≤ 1080 − 1

105 − 1
,

and so m ≤ 125. If d = 2 and x ≥ 6,

6m − 1

5
≤ xm − 1

x− 1
≤ 1080 − 1

105 − 1
,

and hence m ≤ 97, contradicting Proposition 2.3. Similarly, if d ≥ 3,

3m − 1

2
≤ xm − 1

x− 1
≤ 1050 − 1

105 − 1
,

whence m ≤ 94, again contradicting Proposition 2.3. We may thus suppose that
either x = d = 2 and 101 ≤ m ≤ 249, or that x = 4, d = 2 and 101 ≤ m ≤ 125. A
short computation as in the proof of Proposition 2.3 (only with x now fixed rather
than y), with m in these ranges, n ≤ 16 and x ∈ {2, 4} leads, in each case, to a
contradiction.

We may thus assume that gcd(x, y) = 1. This already reduces the number of
pairs (x, y) we need to consider to prove Theorem 3 from 4999850001 to 3039550754.
We can, in fact, eliminate many more by appealing further to other elementary
results of Makowski and Schinzel. The “best” of these for our purposes is Théorème
6 of Makowski and Schinzel [19].

Proposition 2.5 (Makowski-Schinzel). Suppose that (x, y,m, n) satisfy (1) with
gcd(x, y) = 1. If a and b are coprime positive integers, denote by orda(b) the small-
est positive integer t with the property that bt ≡ 1 (mod a). Writing µ = ordxy−y(x)

and ν = ordxy−x(y), we have that gcd
(
y2, x

µ−1
x−1

)
= y and gcd

(
x2, y

ν−1
y−1

)
= x.

A routine corollary of this result (combining Corollaires 1 and 2 of [19]) is the
following.

Corollary 2.6. Suppose that (x, y,m, n) satisfy (1). Then

gcd(y2, x+ 1) | y, gcd(x2, y + 1) | x, gcd(y2, x2 + 1) | y and gcd(x2, y2 + 1) | x.

Application of this corollary reduces the number of pairs (x, y) under consid-
eration to 2099765696.

Other elementary results from [19] serve to eliminate more cases (we observe
that the “smallest” pair not treated by the arguments of [19] is (x, y) = (4, 11)).
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Since, for the values of (x, y) under consideration, these total rather less than 1%
of the remaining cases, we will instead appeal to Lemma 2.2 which provides a com-
putationally efficient way to search for small solutions (x, y) to (1), in conjunction
at least with a version of a lemma of Baker and Davenport [3]. For the latter, we
will use Lemma 5 of Dujella and Pethő [9]:

Lemma 2.7 (Dujella and Pethő). Suppose that M is a positive integer and that κ
and µ are real numbers. Let p/q be a convergent in the infinite simple continued
fraction expansion of κ satisfying q > 6M and let

ε = ‖µq‖ −M · ‖κq‖,
where ‖ · ‖ denotes the distance from the nearest integer.

If ε > 0, and A and B are positive real numbers with B > 1, then there is no
solution to the inequality

(12) 0 < mκ− n+ µ < A ·B−m

in integers m and n with
log(Aq/ε)

logB
≤ m ≤M.

We will apply this result with

κ =
log x

log y
, µ =

log
(
y−1
x−1

)
log y

, A =
2

log y
, B = x and M = 1015.

For a given pair (x, y), our problem thus reduces to finding convergents pk/qk in

the infinite simple continued fraction expansion to κ = log x
log y which satisfy certain

properties. Note that, since gcd(x, y) = 1, such a κ is necessarily irrational. Sup-
pose that, given (x, y) and a fixed real number t > 20, we can find a k such that
we have

(13) 1020 ≤ qk < 10t and ‖µqk‖ > 10−4.

Since any such convergent necessarily satisfies∣∣∣∣κ− pk
qk

∣∣∣∣ < 1

q2k
,

it follows that

‖κqk‖ = |κqk − pk| <
1

qk
,

whence, from (13) and M = 1015, we thus have

‖µq‖ −M · ‖κq‖ = ε > 9 · 10−5.

From Lemma 2.7, (13) and inequality (7), it follows that

(14) m <
log(Aqk/ε)

logB
=

log
(

2·10t+5

9 log y

)
log x

.

Since we may suppose that y ≥ 11 and x ≥ 2, if we take t = 26, the right-hand side
here is smaller than 100, contradicting Proposition 2.3. Similarly, if we suppose
that x > 40, then (14) contradicts Proposition 2.3 for all t ≤ 155.

It remains then, to check to see if there exists a convergent pk/qk to κ = log x
log y

for which (13) holds, with t = 26 for 2 ≤ x ≤ 40, and, say, t = 40, for 40 < x < 105.
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In case log x and log
(
y−1
x−1

)
are Q-linearly dependent, this can fail to occur. Indeed,

if there exists a positive integer s such that

(15)
y − 1

x− 1
= xs,

then µ = sκ and so

‖µqk‖ ≤ |sκqk − spk| <
s

qk
≤ 16

1020
< 10−4.

In this case, however, inequality (13) becomes

(16) 0 < (m+ s) log x− n log y < 2 · x−m.
We may apply Corollary 2 of Laurent [15] to deduce a lower bound for this linear
form with, in the notation of that paper, m = 30, D = 1 and

b′ <
2(m+ s)

log y
,

where this last inequality is a consequence of (13). From s < log y/ log x, inequality
(7) and y ≥ 11, it follows from Corollary 2 of Laurent [15] that

log |(m+ s) log x− n log y| > −17.9 · 34.742 ·max {log x, 1} · log y,

which, with (16), implies that

m <
log 2

log x
+ 21603 log y and so m ≤ 248714

if x ≥ 3, and
m < 1 + 31167 log y whence m ≤ 358824,

if x = 2. In any case, we have from (16) that∣∣∣∣ log x

log y
− n

m+ s

∣∣∣∣ < 2

(m+ s) log y · xm

and hence, from m ≥ 101 and s ≤ 16, which together imply that

xm log y > 4(m+ s),

we have that n
m+s = pk

qk
for some convergent pk/qk to log x

log y . Further, since∣∣∣∣ log x

log y
− pk
qk

∣∣∣∣ > 1

(ak+1 + 2)q2k
,

where ak+1 is the corresponding (k + 1)st partial quotient, it follows that

ak+1 >
log(y) · xm

2(m+ s)
− 2 ≥ log(11) · 2101

234
− 2 > 1028,

while qk ≤ m+ s ≤ 358840. A routine computation of the 409 continued fractions
involved shows that this does not occur.

We may thus suppose that identity (15) is not satisfied for any positive integer
s. For the remaining roughly 2× 109 pairs (x, y), we used code written in Maple to
calculate the simple continued fraction of κ and verify that there exists a convergent
pk/qk to κ = log x

log y for which (13) holds, with t = 26 for 2 ≤ x ≤ 40, and t = 40,

for 40 < x < 105. This is easy to do in parallel, though not an especially short
computation (taking approximately 2000 hours of processor time). Full details (and
the relevant pk/qk) are available from the authors upon request. The storage of
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these convergents takes roughly 100 gigabytes of memory. This completes the proof
of Theorem 3.

3. The case gcd(m− 1, n− 1) > 1

We next turn our attention to equation (1) where the exponents m and n
have the property that

(17) gcd(m− 1, n− 1) = d > 1.

As it transpires, this condition allows one to apply a wide variety of effective meth-
ods from Diophantine Approximation to the problem, including lower bounds for
linear forms in logarithms, Runge’s method and the hypergeometric method of
Thue and Siegel. Combining results from [4] and [20], we have

Theorem 7 (Nesterenko-Shorey, B-Gherga-Kreso). If there is a solution in integers
x, y, n and m to equation (1), satisfying (17), then

(18) x < (3d)4n/d

and

(19) x < max

9, 1 +
1

2
(d+ 1)dr−2

∏
p|d

pνp(r!)

 ,

where r = (m − 1)/d and νp(t) is the largest power of p dividing a given positive
integer t.

Theorem 8 (B-Gherga-Kreso). If there is a solution in integers x, y and m to
equation (1), with n ∈ {3, 4, 5} and satisfying (17), then

(x, y,m, n) = (2, 5, 5, 3) and (2, 90, 13, 3).

From these results, to prove Theorem 4, we may thus suppose that 6 ≤ n <
m ≤ 50 and that gcd(m− 1, n− 1) > 1.

an algorithm described in the paper of S. Tengely [25].
This algorithm relies crucially on a condition known as Runge’s Condition

[22], which is as follows

Proposition 3.1 (Runge’s Condition). Let P (X,Y ) =
M∑
i=0

N∑
j=0

aijX
iY j be an ir-

reducible polynomial over Q with coefficients in Z. P is said to satisfy Runge’s
Condition unless all of the following holds:

(1) aiN = aMj = 0 for all non-zero i, j
(2) for every monomial aijX

iY j of P , Ni+Mj ≥MN
(3) the sum of all monomial of P for which Ni + Mj = NM is a constant

multiple of a power of an irreducible polynomial in Z[X,Y ].
(4) there is only one system of conjugate Puiseux expansions at x =∞ for the

algebraic function y = y(x) defined by P (x, y) = 0.

If P satisfies Runge’s condition, then P (x, y) = 0 has finitely many rational
solutions (x, y) ∈ Q2 (and hence finitely many integer solutions).
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From Goormaghtigh’s equation, we get

(20) P (X,Y ) =

m−1∑
i=1

Xi −
n−1∑
j=1

Y j = 0

which clearly satisfies Runge’s condition, since the sum of all monomials satisfying
(n− 1)i+ (m− 1)j = (m− 1)(n− 1) is simply 0. Therefore, for fixed (m,n), we are
guaranteed finitely many rational (and hence integer) solutions to Goormaghtigh’s
equation.

The algorithm also requires a lemma, found in [25], the proof of which can be
found in [26].

Lemma 3.2. Let F (X), G(Y ) be two polynomials with degrees M,N respectively
(in our case, M = m − 1, N = n − 1). Suppose that gcd(M,N) > 1. Let d be a
divisor of gcd(M,N). Then there exist Laurent expansions

u(X) =

∞∑
i=−nd

fiX
i

v(Y ) =

∞∑
i=−md

giY
i

of the algebraic functions U and V defined by Ud = F (X) and V d = G(Y ),
such that d2(N/d+i)−1fi ∈ Z and d2(M/d+i−1)gi ∈ Z for all i, and f−Nd

= g−Md
= 1.

Furthermore, |fi| ≤ (H(F ) + 1)
N
d +i+1 and |gi| ≤ (H(G) + 1)

M
d +i+1 where H(·) is

the height of a polynomial.

We describe the algorithm, for the case where gcd(m − 1, n − 1) is odd; the
even case requires that one be slightly more careful, and is covered in the original
paper [25].

Let U and V be as in Lemma 3.2, with F (Y ) = Xm−1
X−1 , G(Y ) = Y n−1

Y−1 . Let

p be the smallest prime divisor of gcd(m − 1, n − 1) (in this case, p ≥ 3). Let D
be the least common multiple of the denominators of the coefficients of the non-
constant terms of U and V , as well as the denominator of the difference of their
constant terms, and let t > 0. F (x)− (U(x) + t)p and F (x)− (U(x)− t)p have op-
posite signs, with their degrees being even. Thus, for sufficiently large |x|, we have
(U(x) − t)p < F (x) < (U(x) + t)p. A similar situation applies to G,V and y. Let
[x−t , x

+
t ] be the interval where x−t is the smallest (real) root of F (x)− (U(x)− t)p,

and x+t is the largest (real) root of F (x)−(U(x)+t)p. Let [y−t , y
+
t ] be the analogous

interval for y.

If (x, y) is an integer solution to Goormaghtigh’s equation with neither x ∈
[x−t , x

+
t ] nor y ∈ [y−t , y

+
t ], we can say that

(U(x)− t)p − (V (y) + t)p < F (x)−G(y) < (U(x) + t)p − (V (y)− t)p.
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Following a series of manipulations, it turns out that

−2t < u(x)− v(y) < 2t.

From Lemma 3.2 we know that the denominator of u(x)−v(y) divides p
2m
p −1,

so that alsoD divides p
2m
p −1. Therefore x is a solution to ResY (F (X)−G(Y ), U(X)−

V (Y ) − T ) = 0 for some rational T , |T | < 2t, and the denominator of T dividing
D. Our algorithm is thus as follows:

First, pick a t; Tengely describes a way of choosing a good value in his paper.
Then, search for integer solutions to Goormaghtigh’s equation for x ∈ [x−t , x

+
t ]

and for y ∈ [y−t , y
+
t ]. After this, find all integer solutions x of the equation

ResY (F (X)−G(Y ), U(X)−V (Y )−T ) = 0 for all rational numbers T with |T | < 2t
and the denominator of T dividing D. For all solutions found from the resultant
equation, find the corresponding y.

We implemented the algorithm given by Tengely, written in Maple, to verify
that, indeed, no integer solutions to Goormaghtigh’s equation exist for 2 < n <
m ≤ 50 given that gcd(m− 1, n− 1) > 1.

4. The case m = n+ 1

We now turn to the case where m = n + 1. From Theorem 2, we may
suppose that n ≥ 5. Again Runge’s method turns out to be applicable (to an
auxiliary equation) and, in fact, works particularly well, since here the Puisseux
expansions are actually Laurent expansions with positive coefficients. We start, as
in Davenport, Lewis, and Schinzel [8] (this argument has its genesis in the paper
of Makowski and Schinzel [19]), with the fact that we can re-write Goormaghtigh’s
equation for m = n+ 1 as

(21) xn = (y − x)

n−1∑
k=1

yk − xk

y − x
.

It follows that there exist positive integers a and b such that y − x = an,
n−1∑
k=1

yk−xk
y−x = bn, and ab = x. Substituting these back into (21), we are led to the

equation

(22) F (a, b) = bn −
n−2∑
j=0

(
n−j−2∑
i=0

(
i+ j + 1

j

)
aj+ni

)
bj = 0.

From this, we may write b as a Laurent series expansion in a,

b = an−2 +
pn−3
qn−3

an−3 + · · ·+ p1
q1
a+

p0
q0

+
p−1
q−1

a−1 + · · · ,

where the pi and qi are positive integers, with gcd(pi, qi) = 1, for each i. We may
check that, at least for the values of n under consideration, we always have that
qi | q0, for i = 1, 2, . . . , n− 3 and hence

(23) Pn(a) = q0a
n−2 +

q0pn−3
qn−3

an−3 + · · ·+ q0p1
q1

a+ p0
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is a polynomial in a with positive integer coefficients. If we have a solution to (22)
in positive integers a and b, then necessarily q0b = Pn(a) + k for some positive
integer k, where we have, additionally, that

(24) Pn(a) ≡ −k (mod q0).

Let us now define, for each positive integer k,

Gk(a) = (Pn(a) + k)n −
n−2∑
j=0

(
n−j−2∑
i=0

(
i+ j + 1

j

)
aj+ni

)
qn−j0 (Pn(a) + k)j .

If there exists a solution to (22) in positive integers a and b, then, necessarily, there
exists a solution to Gk(a) = 0 in positive integers a and k, satisfying (24). Defining
ak,n to be the largest real number for which Gk(ak,n) = 0, it follows, via calculus,
that ak,n is decreasing in k and that Gk(a) < 0 for a > ak,n.

To illustrate how we may turn these observations into an efficient algorithm
for solving equation (22), let us consider the case n = 6. Here, we have

P6(a) = 31104a4 + 25920a3 + 19440a2 + 13440a+ 8645,

q0 = 31104 and a1,6 = 61.52146 . . .. It follows immediately that we have that
a ≤ 61. For these values of a, a short computation reveals that, from (24), we
have k ≥ 379 (corresponding to a = 46). Since a379,6 = 3.418385 . . ., we thus have
1 ≤ a ≤ 3. A short check that F (a, b) has no integral roots for these values of a
completes this case.

For larger values of n, we actually argue somewhat differently. Let us illustrate
this in case n = 16. We find that

a1,16 ∼ 2.75× 109 and q0 = 147573952589676412928.

Rather than looping through this (large) collection of values of a, we instead solve
the congruence (24), to find that the only solutions with k < k0 = 4× 107 are with

k ∈ {2445, 6541, 10637, 14221, 14733, 18829, . . . , 39999885},

a set with precisely 13023 elements. In each case, ak,16 is not an integer and we find
that, in each case, the smallest positive solution a to the congruence (24) for any
of these values k exceeds a1,16. Since a4×107,16 < 435359, we may thus conclude
that 1 ≤ a ≤ 435358. For each of these values, we check to see whether or not the
polynomial F (a, b) has an integer root. The total time for this computation was
somewhat less than eight hours on a single core in Maple. The only case when the
resulting polynomial (in b) failed to be irreducible was with a = 1, where we find
the root b = −1.

A program was written in Maple to implement the above algorithm, and with
it we were able to show that there are no solutions to the m = n + 1 case for
3 ≤ n ≤ 17; the only roots encountered for F (a, b) corresponded to (a, b) = (1,−1).
We tabulate our data as follows.
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n [a1,n] k0 # [ak0,n] time
5 4 20 4 1 < 1s
6 61 20 0 13 < 1s
7 42 20 3 9 < 1s
8 627 20 0 140 < 1s
9 1909 1000 111 60 < 1s
10 70325 4000 5 1112 3s
11 12954 4000 364 205 2s
12 9205553 6× 105 1042 11884 354s
13 332194 5× 104 3847 1485 28s
14 153170043 3× 106 4463 88433 1382s
15 801682738 4× 106 266666 400841 10044s
16 2753445124 4× 107 13023 435358 27400s
17 373406096 3× 106 176471 215586 8490s

For larger values of n, the computation rapidly becomes rather unwieldy.

5. The case (n,m) = (3, 6)

In case (n,m) = (3, 6), equation (1) becomes

y2 + y + 1 = x5 + x4 + x3 + x2 + x+ 1

whereby Y = 16(2y + 1) and X = 4x satisfies

(25) Y 2 = X5 + 4X4 + 16X3 + 64X2 + 256X + 256.

We would like to show that the only rational solutions to this equation are with
X = 0. Appealing to Magma [5], we use the following commands

_<x> := PolynomialRing(Rationals());

> C := HyperellipticCurve(x^5+4*x^4+16*x^3+64*x^2+256*x+256);

> ptsC := Points(C : Bound:=1000); ptsC;

{@ (1 : 0 : 0), (0 : -16 : 1), (0 : 16 : 1) @}

> J := Jacobian(C);

> RankBound(J);

1

> TorsionSubgroup(J);

Abelian Group of order 1

> PJ := J! [ ptsC[2], ptsC[1]];

> Order(PJ);

0

to deduce that the Jacobian of the curve corresponding to (25) has Mordell-Weil
group with rank 1 and trivial torsion, and that the point we are calling PJ has
infinite order in this group. The commands

> Height(PJ);

0.0594215465492475716871323583279

> LogarithmicBound := Height(PJ)+HeightConstant(J);

> AbsoluteBound := Ceiling(Exp(LogarithmicBound));

> PtsUpToAbsBound := Points(J : Bound:=AbsoluteBound );

> ReducedBasis( [ pt : pt in PtsUpToAbsBound ]);

[ (x, -16, 1) ]
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[0.0594215465492475716871323583279]

then show that PJ is in fact a generator of the Mordell-Weil group. Finally, ap-
plying a Chabauty argument with p = 7

> BadPrimes(C);

[ 2, 3, 23 ]

> Chabauty(PJ,7);

{@ <0, 1, 4, 1> @}

leads to the desired conclusion. This complete the proof of Theorem 4.

6. The case (m− 1) = 3(n− 1)

Finally, we will focus our attention on the situation when the ratio m−1
n−1 is a

small fixed positive integer. In 1963, Karanicoloff [14] showed that the only solution
to (1) with m−1

n−1 = 2 is given by (x, y,m, n) = (2, 5, 5, 3). We will treat the case
k = 3 with a rather different argument.

To start, we will appeal to a result of Bugeaud and Shorey [7], whose proof is
based upon lower bounds for linear forms in logarithms.

Lemma 6.1. Let (x, y,m, n) be a solution of (1). Then we have

gcd(m− 1, n− 1) ≤ 33.4m1/2.

From this, if m−1
n−1 = 3, it follows that n ≤ 3348. Further, from Theorems 3

and 4, we may suppose that n ≥ 18 and that x ≥ 47. In this case, from equation
(1) with m = 3n− 2, we may write y as a Laurent expansion in terms of x :

(26) y = x3+
x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

+
6n3 − 7n2 + 2n

24(n− 1)4x
+

∞∑
k=2

Ek(x, n)

where each Ek(x, n) is positive and bounded above by

Fk(x, n) =
nk+2

(k + 3)(n− 1)k+3xk
.

Since n ≥ 18, we have

Fk(x, n)

Fk+1(x, n)
=

(k + 4)(n− 1)x

(k + 3)n
>

17x

18
,

whence, from x ≥ 47,
∞∑
k=2

Ek(x, n) < 1.1E2(k, n) < 1.1
n4

5(n− 1)5x2
<

0.28

(n− 1)x2
.

We may thus write

(27) y = x3 +
x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

+ E(x, n),

where

0 < E(x, n) <
1

3(n− 1)x
.

It follows that

(28)

∥∥∥∥ x2

n− 1
+

(
n

2(n− 1)2

)
x+

2n2 − n
6(n− 1)3

∥∥∥∥ < 1

3(n− 1)x
.
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Since inequality (19) implies that

x ≤ 3n(n− 1),

it remains to check to see whether or not inequality (28) is satisfied for each n with
18 ≤ n ≤ 3348 and each x with 47 ≤ x ≤ 3n(n− 1).

A Maple calculation (of roughly 80 hours on a single core) verifies, for the
values of n and x under consideration, that (28) holds precisely when n ≡ 1 (mod 6)
and x = x0 for

x0 =
1

3

(
(2j − 1)n2 − (4j + 3)n+ 2j + 1

)
.

Here, j ∈ {1, 2, 3} and n ≡ 6j − 11 (mod 18). Defining

f(x, n) = 6(n− 1)2x2 + 3n(n− 1)x+ 2n2 − n,

it follows, after a little work, that f(x0,n)
6(n−1)3 is equal to

(2j − 1)2n3

9
− (12j2 + 8j − 7)n2

9
+

(24j2 + 38j + 25)n

18
− 8j2 + 8j − 1

18
+

1

6(n− 1)3
,

whence∥∥∥∥ x20
n− 1

+

(
n

2(n− 1)2

)
x0 +

2n2 − n
6(n− 1)3

∥∥∥∥ =
1

6(n− 1)3
<

1

3(n− 1)x0
.

Notice that if n ≡ 1 (mod 6) and x0 corresponds to a solution to (1) with m =
3n− 2, then we necessarily have

E(x0, n) =
1

6(n− 1)3
,

so that

6n3 − 7n2 + 2n

24(n− 1)4x0
+

∞∑
k=2

Ek(x0, n) =
1

6(n− 1)3
,

whence, arguing as previously,

(29)
6n3 − 7n2 + 2n

24(n− 1)4x0
<

1

6(n− 1)3
<

6n3 − 7n2 + 2n

24(n− 1)4x0
+

0.28

(n− 1)x20
.

On the other hand, since n ≥ 18, we may readily show that

6n3 − 7n2 + 2n

24(n− 1)4x0
>

1

6(n− 1)3

for j ∈ {1, 2}, and that

6n3 − 7n2 + 2n

24(n− 1)4x0
<

1

6(n− 1)3

for j = 3 and n ≥ 43, in each case contradicting (29). Finally, if n = 25 and
x0 = 919, we simply check that equation (1) fails to be satisfied. This completes
the proof of Theorem 6.
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